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Abstract

This paper develops a quality-ladder growth model with elastic labor supply and distor-
tionary taxes to analyze the effects of different subsidy instruments: subsidies to the produc-
tion of final goods, subsidies to the purchase of intermediate goods, and subsidies to research
and development (R&D). Moreover, the model is calibrated to the US data to compare the
growth and welfare implications of these subsidies. The main results are as follows. First,
we analytically show that an optimal coordination of all instruments attains the first-best
outcome. Second, in the calibrated economy, we numerically find that for the use of a sin-
gle instrument, R&D subsidy is less growth-enhancing and welfare-improving than the other
subsidies, whereas for the use of a mix of two instruments, subsidizing the production of final
goods and the purchase of intermediate goods is most effective in promoting growth but least
effective in raising welfare.
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1 Introduction

In this study, we explore the effects of subsidization on economic growth and social welfare
in a Schumpeterian economy with elastic labor supply and distortionary taxes. In many indus-
trialized economies where research activities for innovations are the major engine of growth, it is
observed that research and development (R&D) activities are highly intervened by government
policies. The narrative of government intervention on R&D activities has been justified by a spate
of endogenous-growth-theory literature that highlight the presence of a positive R&D external-
ity, since inventors of new products face knowledge spillovers and it is difficult for them to fully
appropriate the benefits of innovations (e.g., Romer 1990, Grossman and Helpman 1991, Aghion
and Howitt 1992, and Jones and Williams 2000).1 In subsequent R&D-based growth models, the
granting of monopoly rights to innovators and subsidies to R&D are the two major forms of
government policy instruments exploited to deal with such an R&D externality, both of which,
unfortunately, have limitations.2 Granting monopoly power to successful innovators in the form
of patent protection, which incentivizes entrepreneurs to carry out R&D activities by allowing
for monopolistic profits, would reduce the demand for production inputs to the level below the
first-best allocation.3 Similarly, subsidizing R&D investment also aims to effectively promote
costly research activities to stimulate growth,4 thereby potentially generating sizable effects on
welfare. Nevertheless, the tool of R&D subsidies still cannot remove the distortion of monopoly
pricing, since this policy instrument mainly affects the competitive R&D sector instead of the
monopolistic production sector.

To internalize R&D externalities and remove the monopoly-pricing distortion, the existing
studies exploiting the R&D-based growth framework have used a subsidization-policy regime,
which includes subsidies to manufacturing and subsidies to R&D. In the presence of inelastic
labor supply and lump-sum taxes through which subsidies are financed, the model of Barro and
Sala-I-Martin (2003) with expanding varieties of new products shows that subsidies to manufac-
turing (through either final goods produced by competitive firms or the purchase of intermediate
goods produced by monopolistic firms) are able to effectively restore the social optimum, which,
however, cannot be achieved by subsidizing R&D activities. In contrast, the model of Acemoglu
(2009) with improving quality of existing products implies that subsidizing both manufacturing
and R&D is able to remove the distortions and replicate the socially optimal allocation.5

1In addition to this positive R&D externality, there can also be negative R&D externalities due to duplicative R&D
(i.e., congestion externalities in Jones and Williams 1998, 2000) and business stealing (Bloom et al. 2013). However, the
positive R&D externality tends to substantially outweigh the negative externalities (Grossmann et al. 2013), and this
is consistent with the existing empirical evidence suggesting that the social return to R&D exceeds the private return
by a wide margin. See Hall et al. (2010) for a complete review of the econometric literature on measuring the private
and social returns to R&D.

2See Park (2008) for a strengthening of patent protection across countries since the signing of the agreement on
Trade-Related Aspects of Intellectual Property Rights (TRIPS) in 1994. In addition, see Impullitti (2010) for evidence
on the widespread use of R&D subsidization in OECD countries since 1980s.

3The recent empirical evidence in Brown et al. (2017) finds that the protection for intellectual property has positive
effects on R&D in OECD economies.

4See, for example, Minniti and Venturini (2017) who find that R&D tax credits have positive effects on productivity
growth of the US economy.

5Yang (2018) shows that in a quality-ladder growth model with lump-sum taxes, mixing the subsidies to manufac-
turing and R&D can also achieve the social optimum even if labor supply is elastic.
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In this study, we extend the R&D-based growth framework of Acemoglu (2009) with quality
improvement, and examine the growth and welfare effects of three types of subsidy instruments:
subsidies to the production of final goods, subsidies to the purchase of intermediate goods, and
subsidies to R&D.6 Specifically, this study revisits the implications of these subsidies and their
combinations by means of growth maximization and welfare maximization. The major contri-
bution of this paper is to provide novel findings, along with important policy implications, in
the context of quality-ladder models taking into account elastic labor supply and distortionary
taxes on wage income, which not only better capture households’ labor supply decisions and
labor market distortions, but also are shown in the literature to be important factors for welfare
analysis in dynamic general equilibrium models.7 Under the variety-expansion growth frame-
work, Zeng and Zhang (2007) consider elastic labor supply with the financing option altered
to distortionary taxes on wage income, and reveal that using a single subsidy alone or even
their combination (with a consumption tax as well) cannot reach the social optimum when la-
bor income tax is within the reasonable range. Moreover, extending Matsuyama (1999, 2001) by
incorporating elastic labor and capital accumulation, Wan and Zhang (2021) suggest that the effi-
cient allocation can be obtained by appropriating tax rules and subsidy regimes, and eliminating
distortions requires policymakers to set opposite taxes on consumption and labor income. Since
such an important practice under the quality-ladder framework is largely missing, our study also
contributes to the literature by filling this gap.

Similar to the canonical R&D-based growth model, the inefficiencies present in this model
originate from the distorted resource allocation in production caused by monopoly price and in
innovation caused by R&D externalities. Nevertheless, by incorporating elastic labor supply and
distortionary labor taxes, an additional inefficiency is introduced through the consumption-labor
tradeoff in households’ decision, which affects the resource allocation in production as well.8

Therefore, the policymaker can adjust the equilibrium allocation to mitigate these distortions by
properly implementing the subsidy tools.

The findings of this study are summarized as follows. First, it is shown that subsidies to
manufacturing are more effective in eliminating the distortions in monopoly pricing and labor
supply, whereas subsidies to research are more effective in eliminating the distortion in R&D
externalities. Thus, an optimal mix of three policy instruments eliminates the three layers of
inefficiencies in the decentralized equilibrium, restoring the social optimum. Second, in the
calibrated economy, when only a single subsidy tool is used, subsidizing R&D investment is
less effective than subsidizing manufacturing in terms of promoting growth and raising wel-
fare. This is because the benefits of innovations and the removal of inefficiencies are both less
sensitive to the decrease in research expenditures resulting from subsidies to R&D than to the
increase in production volume induced by subsidies to manufacturing. In other words, most of

6Throughout this study, subsidies to the production of final goods and those to the purchase of intermediate goods
are collectively called subsides to manufacturing.

7Bilbiie et al. (2019) investigate the welfare effect of distortions in a dynamic stochastic general equilibrium model
featuring monopolistic competition and endogenous product creation. Comparing the market equilibrium with the
socially efficient allocation, their quantitative analysis indicates that distortions due to elastic labor on its own account
for a significant share (5%) of consumption. Their model suggests that achieving the first-best allocation requires
subsidies on labor and physical capital investment.

8In Zeng and Zhang (2007), inefficiencies from monopoly pricing and labor supply are classified to the static
distortion, whereas inefficiency from R&D externalities is classified to the dynamic distortion.
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the inefficiencies in the decentralized equilibrium of this model stem from the distorted resource
allocation caused by monopoly pricing and labor supply. Third, as for the use of a combination
of any two instruments, subsidizing the production of final goods and the purchase of inter-
mediate goods is most effective in promoting growth but least effective in raising welfare. The
reason is that using two forms of subsidies to manufacturing together expands the dimension
that enlarges the production size and hence is most growth-stimulating. Nevertheless, these two
subsidy instruments remove the distortions stemming from only the manufacturing sector, so
their combination generates less welfare as compared to the combinations of policy instruments
involving R&D subsidies, which remove the distortions stemming also from the research sector.
These results highlight the importance of the coordinated use of subsidies to R&D and subsidies
to manufacturing in raising social welfare.

To thoroughly investigate the effects of elastic labor and distortionary taxes, we exploit the
constant Frisch elasticity preference of households as in Trabandt and Uhlig (2011). It is shown
analytically that the elasticity of labor supply plays an important role in determining the steady-
state allocation of labor, consumption and R&D investment, and the steady-state level of welfare.
In contrast, our quantitative analysis calibrated to the US economy suggests that intertemporal
elasticity of substitution in consumption can remarkably affect the magnitude of the optimal
subsidy rates. It is found that, under the first-best allocation, higher intertemporal elasticity of
substitution is associated with a higher subsidy to final goods producers, a lower subsidy to
intermediate goods producers, and a lower tax rate on R&D activities.

This study also contributes to the literature by comparing the welfare implications between
models with and without elastic labor. While empirical evidence is mixed, studies based on mi-
croeconomic data typically report low values of the Frisch elasticity estimate, which potentially
motivates researchers to consider an analytical framework with inelastic labor for simplification.9

However, this study shows that it is of central importance to distinguish the implications under
low elasticity of labor supply and under perfectly inelastic labor supply. Otherwise, considering
low elasticity of labor supply as perfectly inelastic labor supply could result in misleading policy
and welfare implications. In particular, when labor supply is perfectly inelastic, distortions in-
duced by consumption-leisure tradeoff no longer exist, and hence, it would become impossible
to uniquely pin down the optimal combination of three subsidy tools in our model. According to
our quantitative analysis, the potential welfare loss associated with the misuse of subsidy instru-
ments is increasing in the true value of the Frisch elasticity, and its magnitude can be significant
in certain circumstances.

This study relates to the vast literature that explore the effects of R&D subsidies in innovation-
driven growth models; see for example, Segerstrom (1998), Lin (2002), Dinopoulos and Syropou-
los (2007), Şener (2008), Impullitti (2010), and Chu and Cozzi (2018), in which either variety
expansion or quality improvement is considered as the process of innovation, in addition to
Peretto (1998), Segerstrom (2000), Chu et al. (2016), and Chu and Wang (2022), in which the two
dimensions of innovation are combined. While inspiring, the aforementioned studies mainly fo-
cus on financing subsidy costs with non-distortionary taxes, ruling out the distortionary effects
of taxes on the aggregate equilibrium allocation. Our study differs from theirs by considering

9For recent surveys of literature inferring labor supply elasticity based on microeconomic data, please refer to
Meghir and Phillips (2010) and Saez et al. (2012).
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the impacts of R&D subsidies when subsidization is financed by distortionary labor income taxes
that distort the consumption-labor decision.10

This study also relates to the literature on R&D-based growth models that consider the mixed
use of subsidies to research and intermediate goods. Grossmann et al. (2013) show that in a semi-
endogenous growth model put forward by Jones (1995), a combination of a time-varying subsidy
to R&D and a constant subsidy to intermediate-good production can achieve the socially optimal
growth path. Furthermore, Li and Zhang (2014) show that in the Matsuyama (1999) model of
growth through cycles, using subsides to R&D and the purchase of intermediate goods, either
individually or jointly, yields significant welfare gains. However, the analysis of these interest-
ing studies focuses on dynamic general equilibrium frameworks with inelastic labor supply.11

Therefore, the present paper complements their interesting studies by investigating the welfare
implications when labor is supplied elastically. It turns out that elastic labor supply plays a
crucial role in our model in attaining the social optimum.

Taking into account elastic labor supply, Annicchiarico et al. (2022) investigate optimal taxa-
tion in a scale-free quality-ladder model featuring distortionary labor and capital income taxes,
levied by an exogenous public sector which consumes a fixed fraction of gross output. They
find that, facing a larger share of capital income or a larger share of government expenditures
in GDP, an increase in the ratio of capital to labor income tax leads to sizable welfare gains.
Their analysis, however, focuses on the second-best allocation by assessing the welfare effect of
the redistribution of the tax burden between labor and capital income taxes, rather than inves-
tigating the possibility of eliminating all distortions to achieve the social optimum. Our study
complements their interesting study by exploring subsidy regimes that can potentially replicate
the socially optimal allocation.

Finally, our study complements the recent study of Wan and Zhang (2021) who consider a
variety-expansion model with elastic labor by comparing the roles of subsidies on welfare. Simi-
lar to their results, our numerical results find large potential gains in welfare from implementing
optimal subsidies. In particular, our results continue to suggest an increase in manufacturing
subsidies to increase labor and the demand for products. Nevertheless, in contrast to their study,
our results suggest an increase in labor income taxes to raise the financing of subsidization. In
addition, the results suggest a decrease in subsidies on research costs to eliminate the inefficien-
cies of (negative) R&D externalities. These welfare comparisons reveal the importance of the
process of innovation (variety expansion versus quality improvement) regarding the design of
optimal subsidy instruments in R&D-based growth models.

The rest of this paper is organized as follows. Section 2 presents the model setup. Section 3

characterizes the decentralized equilibrium and explores the growth effects of subsidies. Section
4 derives the first-best optimal outcome and analyzes the subsidy policy that restores the social

10Atkeson et al. (2019) also consider various innovation subsidies based on the framework of Garcia-Macia et al.
(2019) and explore both the dynamic and steady-state properties of aggregate productivity. Our study complements
this seminal research by studying the growth and welfare effects of production and R&D subsidies in addition to wage
income taxes. More importantly, the analytical tractability of the model allows us to clearly disentangle the impacts
of different policy tools.

11One exception is Nuño (2011), who finds that in the presence of elastic labor supply, the optimal mix of subsidies
to research and intermediate-good production can replicate the first-best allocation in a Schumpeterian growth model
with business cycles. Nevertheless, the financing of subsidies in his analysis relies on a lump-sum tax on households.
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optimum. Section 5 performs a numerical analysis in a calibrated economy to evaluate the
growth-maximizing and welfare-maximizing subsidy instrument(s). A model with inelastic labor
supply is discussed in Section 6. Finally, Section 7 concludes the study.

2 The model

In this study, we extend the version of the quality-ladder growth model in Acemoglu (2009)
(Chapter 14), which originates from Grossman and Helpman (1991), by incorporating (a) subsi-
dies to the production of final goods, the purchase of intermediate goods, and expenditures on
R&D, and (b) elastic labor supply. Moreover, this model introduces distortionary labor income
taxes to finance the subsidies as in Zeng and Zhang (2007). This study analyzes the growth and
welfare implications of subsidization by controlling one or a mix of these policy instruments.

2.1 Households

Suppose that the economy admits a unit continuum of identical households. Following Tra-
bandt and Uhlig (2011) and Annicchiarico et al. (2022), we exploit a framework with constant
Frisch elasticity and assume that the lifetime utility function of each household is given by

Ut =
∫ ∞

t=0
e−ρt

C1−σ
t

[
1− θ(1− σ)L

1+ 1
η

t

]σ

− 1

1− σ
dt, (1)

where σ > 0 is the inverse of the intertemporal elasticity of substitution (IES) in consumption,
η > 0 governs the Frisch elasticity of labor supply, ρ is the discount rate, Ct and Lt denote
the household’s consumption of final goods and labor hours supplied, respectively, and the
parameter θ > 0 captures the intensity of leisure preference relative to consumption.12

There is no population growth in this economy.13 Each household chooses consumption
Ct and labor supply Lt to maximize its lifetime utility (1) subject to the instantaneous budget
constraint such that

Ȧt = rt At + Wt(1− τt)Lt − Ct, (2)

where At is the real value of financial assets owned by each household, Wt is the real wage rate, rt

is the real interest rate, and τt is the tax rate on labor wage.14 The standard dynamic optimization

12Note that, when σ = 1, the utility function becomes

Ut =
∫ ∞

0
e−ρt

(
ln Ct − θL

1+ 1
η

t

)
dt.

The corresponding equilibrium conditions can be obtained by setting σ in the generalized version of our model to
unity. One exception lies in the steady-state welfare function, on which we provide detailed discussion in Appendix
A.2.

13Our model results are robust to the setting of population growth in which the counterfactual scale effect is
sterilized in a fully-endogenous approach. See the detailed discussion in Cozzi (2017a).

14Here we consider a wage income tax instead of an asset income tax, because if R&D subsidies were financed by
a tax on asset income, then raising R&D subsidies would generate a counteracting effect on innovation, which would
make the impact of R&D subsides unclear.
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implies the consumption-labor decision given by

Wt(1− τt)

Ct
=

σθ(1 + η)L
1
η

t

η

[
1− θ(1− σ)L

1+ 1
η

t

] , (3)

and the usual Euler equation given by

Ċt

Ct
+

θ(1− σ)(1 + η)L
1
η

t L̇t

η

[
1− θ(1− σ)L

1+ 1
η

t

] =
rt − ρ

σ
. (4)

Moreover, households own a balanced portfolio of all firms in the economy. The transversality
condition is given by limt→∞ e−ρtC−σ

t At = 0, which implies that the discounted present value of
assets or debt should be zero when time goes to infinity.15

2.2 Final goods

Final goods Yt are produced competitively by using labor and a continuum of intermediate
goods according to the following production function:

Yt =
L1−β

t
β

∫ 1

0
qt(ν)Xt(ν)

βdν, β ∈ (0, 1) (5)

where Lt is the level of labor, Xt(ν) is the quantity of intermediate good in industry line ν ∈ [0, 1]
whose quality is qt(ν), and β measures the importance of intermediate good ν relative to labor
in producing final goods. In addition, the quality qt(ν) evolves as follows:

qt(ν) = λnt(ν)q0(ν), (6)

where λ > 1 represents the step size of each quality improvement, nt(ν) is the number of inno-
vations in line ν that have occurred between time 0 and time t. Then the profit function of the
competitive final-good producers is given by

π̂t = (1 + sy,t)
L1−β

t
β

∫ 1

0
qt(ν)Xt(ν)

βdν−WtLt − (1− sx,t)
∫ 1

0
Pt(ν)Xt(ν)dν, (7)

where sy,t ∈ (0, 1) (sy,t ∈ (−1, 0)) is the subsidy rate (tax rate) to the production of final goods
and sx,t ∈ (0, 1) (sx,t ∈ (−1, 0)) is the subsidy rate (tax rate) to the purchase of intermediate
goods.

With free entry and profit maximization, equation (5) yields the conditional demand functions

15In the steady state, as will be shown, the real interest rate rt is constant. Therefore, we have e−ρtC−σ
t = e−rt, and

the transversality condition also implies that neither assets nor debt should grow at the rate of return to assets (or
higher) in the long run.
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for inputs, namely, the demand for labor:

Lt = (1 + sy,t)(1− β)
Yt

Wt
, (8)

and the demand for the intermediate good ν:

Xt(ν) =

(
1 + sy,t

1− sx,t

) 1
1−β
(

qt(ν)

Pt(ν)

) 1
1−β

Lt, (9)

where Pt(ν) is the price of the ν-th intermediate good relative to final goods.

2.3 Intermediate goods

In each industry line ν ∈ [0, 1], intermediate goods are produced by a monopolistic leader
who holds a patent on the latest innovation and replaced by the products of an entrant who has
a new innovation due to the Arrow replacement effect. The marginal cost of producing a unit of
intermediate good is ψqt(ν) units of final goods, where ψ ∈ (0, 1). Thus, the ν-th intermediate-
good producer maximizes her profits πt(ν) = [Pt(ν)− ψq(ν)]xt(ν) subject to the intermediate-
good demand in (9), which yields the profit-maximizing price such that Pt(ν) = (ψ/β)qt(ν). This
implies that all monopolists charge a price equal to a constant markup 1/β over their marginal
cost of production ψqt(ν). Then, without loss of generality, normalizing ψ ≡ β yields

Pt(ν) = qt(ν). (10)

Substituting (10) into (9) generates the quantity of intermediate good ν such that

Xt(ν) =

(
1 + sy,t

1− sx,t

) 1
1−β

Lt. (11)

Additionally, according to (11), the profit function of the monopolistic firm is given by

πt(ν) = (1− β)

(
1 + sy,t

1− sx,t

) 1
1−β

qt(ν)Lt, (12)

which shows that the monopolistic profit is increasing in product quality.
Technological progress in this model stems from the realization of quality improvements in

qt(ν) across all industry lines. Define the aggregate quality index Qt by a combination of the
total quality of intermediate goods such that

Qt =
∫ 1

0
qt(ν)dν. (13)

Substituting (11) and (13) into the final-good production function in (5) yields the total output in
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the final-good sector such that

Yt =
1
β

(
1 + sy,t

1− sx,t

) β
1−β

QtLt, (14)

which shows that the aggregate output is linearly increasing in the aggregate quality of interme-
diate goods. Next, using (11), the aggregate spending on intermediate goods is obtained by

Xt ≡
∫ 1

0
Pt(ν)Xt(ν)dν = β

(
1 + sy,t

1− sx,t

) 1
1−β

QtLt. (15)

Then the labor wage rate is given by

Wt = (1 + sy,t)

(
1− β

β

)(
1 + sy,t

1− sx,t

) β
1−β

Qt. (16)

Using (12) and (13) yields the aggregate profit that occurs in the intermediate-good sector, which
is given by

Πt ≡
∫ 1

0
πt(ν)dν = (1− β)

(
1 + sy,t

1− sx,t

) 1
1−β

QtLt. (17)

Observing (17) reveals that the total monopolistic profit Πt created by all inventions is increas-
ing in the policy instrument sy,t to the production of final goods and sx,t to the purchase of
intermediate goods, respectively.

2.4 Innovations and R&D

Denote by Vt(ν) the real value of a firm who holds the most recent innovation in line ν.
Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation for Vt(ν) is given by

rtVt(ν) = πt(ν) + V̇t(ν)− pt(ν)Vt(ν), (18)

which is the no-arbitrage condition for the value of the asset (in the form of a patented inno-
vation). Equation (18) implies that the return on this asset rtVt(ν) equals the sum of the profit
flow πt(ν), the capital gain V̇t(ν), and the potential losses pt(ν)Vt(ν) that occur due to creative
destruction, where pt(ν) denotes the Poisson arrival rate of the next successful innovation in each
instant of time. Specifically, based on the lab-equipment assumption, the formulation of pt(ν) is
given by

pt(ν) =
ζzt(ν)

Ltqt(ν)
, (19)

where ζ > 0 is R&D productivity and zt(ν) is the amount of final goods spent in R&D. Equation
(19) means that the probability of the next successful innovation is increasing in R&D expendi-
tures zt(ν) whereas decreasing in quality qt(ν); research on more advanced products becomes
more difficult, so one unit of R&D spending is proportionately less effective when applied to
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a more sophisticated product.16 Moreover, to eliminate the scale effect in this model, we use
the fully endogenous solution by assuming that the arrival rate of innovation depends on R&D
expenditures per unit of labor.17

New innovations in each line are invented by R&D firms, who have free entry into the re-
search market and incur positive expenditures on R&D subject to policy interventions in the
form of subsidization (taxation) at the rate of sr,t ∈ (0, 1) (sr,t ∈ (−1, 0)). Hence, the expected
profit of an R&D firm who spends zt(ν|qλ−1) in R&D in line ν that has quality qλ−1 at time t
must be zero such that pt(ν|qλ−1)Vt(ν|q) − (1− sr,t)zt(ν|qλ−1) = 0, and it, together with (19)
(in the form of pt(ν|qλ−1) = [ζzt(ν|qλ−1)]/[Ltqt(ν)λ−1] if the initial quality is qλ−1), implies the
zero-expected-profit condition as follows:

Vt(ν) =
(1− sr,t)qt(ν)Lt

ζλ
, (20)

where we do not include the quality argument q in variables when it does not cause confusion.
Since At is the aggregate market value of all intermediate products, using (13) yields

At =
∫ 1

0
Vt(ν)dν =

(1− sr,t)QtLt

ζλ
, (21)

implying that At is increasing in the aggregate quality of goods.

2.5 Government budget

Suppose that the policymaker can intervene the production of final goods, the purchase of in-
termediate goods, and the expenditures on R&D by choosing policy tools sy,t, sx,t, and sr,t, respec-
tively. These government interventions are financed by a distortionary tax levied on households’
labor income. Then the government’s budget constraint is given by

τtWtLt = sy,tYt + sx,tXt + sr,tZt, (22)

where Zt ≡
∫ 1

0 zt(ν)dν is the total spending on R&D. In (22), the left-hand side is the tax revenues
collected from households and the right-hand side is the expenditures for subsidization. Hence,
in this model, the government can implement the subsidy (or tax) instruments to affect the input
allocation and steer the market economy.

3 Decentralized equilibrium

An equilibrium consists of a sequence of allocation [Ct, Yt, Lt, Xt(ν), zt(ν)]∞t=0,ν∈[0,1] and a se-
quence of prices [rt, Wt, Pt(ν), qt(ν), Vt(ν)]∞t=0,ν∈[0,1]. In each instant of time,

16For the model to generate stationary balanced growth, we assume that the arrival rate of innovation in (19) is
independent of R&D expenditures across intermediate industries as in Aghion and Howitt (1992).

17In the current literature, the fully endogenous solution proposed by Peretto (1998), Young (1998), and Howitt
(1999) and the semi-endogenous solution proposed by Jones (1995), Kortum (1997), and Segerstrom (1998) are the two
main approaches to remove scale effects. See Cozzi (2017a,b) for detailed discussions.
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• households choose [Ct, Lt] to maximize their utility taking [rt, Wt] as given;
• competitive final-good firms produce [Yt] and choose [Lt, Xt(ν)] to maximize profits taking

[Wt, Pt(ν), qt(ν)] as given;
•monopolistic leaders for intermediate goods produce [Xt(ν)] and choose [Pt(ν)] to maximize

profits;
• R&D firms choose [zt(ν)] to maximize profits taking [qt(ν), Vt(ν)] as given;
• the goods market clears such that Yt = Ct + Xt + Zt;
• the financial market clears such that At =

∫ 1
0 Vt(ν)dν.

3.1 Balanced growth path

In this subsection, we define the decentralized equilibrium and prove that the economy jumps
immediately to a unique and stable balanced growth path (BGP). For an arbitrary path of subsidy
rates [sy,t, sx,t, sr,t]∞t=0, we obtain the following result.

Proposition 1. Holding constant sy, sx, and sr, the economy jumps immediately to a unique and stable
balanced growth path along which variables {Wt, Qt, Xt, Zt, Yt, Ct} grow at the same and constant rate g
and labor supply Lt = L is stationary.

Proof. See Appendix A.

From Proposition 1, given a stationary time path of the policy levers, we can derive the steady-
state levels of variables in our interest along the BGP as follows. First, for a given level of quality
q(ν) (which is constant over time until there is a new innovation in this line), the value of a firm
in line ν (i.e., V(ν)) does not change between time t and time t + ∆t (where ∆t is an interval of
time), namely V̇t(ν) = 0. Thus, using (18) implies that V(ν) will be constant such that

V(ν) =
π(ν)

r + p(ν)
, (23)

where π(ν), r, and p(ν) are the steady-state levels of monopolistic profit, the interest rate, and
the arrival rate of successful innovation in line ν, respectively. Combining (12), (20), and (23)
yields

r + p(ν) = ζλ(1− β)

(
1 + sy

1− sx

) 1
β
(

1
1− sr

)
, (24)

which implies that along the BGP, the arrival rate of the next successful innovation is independent
of the line index ν, denoted by p. In addition, the aggregate expenditures on R&D can be
expressed by

Zt =
∫ 1

0
z(ν)dν =

p
ζ

QtL. (25)

According to Proposition 1, substituting (24) into (4) yields the steady-state growth rate g of
consumption such that

g =
r− ρ

σ
=

1
σ

[
ζλ(1− β)

(
1 + sy

1− sx

) 1
1−β
(

1
1− sr

)
− p− ρ

]
. (26)
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Next, to pin down the growth rate of the aggregate quality index Qt, we know that in an in-
terval of time ∆t, there are pt∆t sectors that experience one innovation, and this increases their
productivity by λ. Hence, the dynamics of Qt is given by

Qt+∆t = pt∆t
∫ 1

0
λqt(ν)dν + (1− pt∆t)

∫ 1

0
qt(ν)dν = Qt[1 + pt∆t(λ− 1)] (27)

Now subtracting Qt from both sides in (27), dividing it by ∆t, and taking the limit as ∆t → 0
yields the steady-state growth rate of aggregate quality (which is also g) such that

g =
Q̇t

Qt
= p(λ− 1), (28)

where Q̇t = lim∆t→0(Qt+∆t−Qt)/∆t. Then combining (26) and (28) yields the steady-state arrival
rate of innovation such that

p =
1

1 + σ(λ− 1)

[
ζλ(1− β)

(
1 + sy

1− sx

) 1
1−β
(

1
1− sr

)
− ρ

]
, (29)

and the steady-state growth rate of aggregate quality is obtained by substituting (29) into (28)
such that

g =
λ− 1

1 + σ(λ− 1)

[
ζλ(1− β)

(
1 + sy

1− sx

) 1
1−β
(

1
1− sr

)
− ρ

]
. (30)

It can be seen that the steady-state growth rate of aggregate quality g in (30) is independent of
labor supply L, implying that the scale effect is eliminated. Consequently, we have the following
result.

Proposition 2. The steady-state growth rate of aggregate quality g is increasing in the subsidy rate sy to
final-good production, the subsidy rate sx to the purchase of intermediate goods, and the subsidy rate sr to
R&D.

Proof. Equation (30) shows that g is increasing in sy, sx, and sr.

Intuitively, on the one hand, either a higher subsidy rate sy to the production of final goods
or a higher subsidy rate sx to the purchase of intermediate goods can increase the demand for in-
termediate goods Xt(ν) in (9), which raises the profits of monopolistic firms in the intermediate-
good sector brought by innovations. On the other hand, a higher subsidy rate sr to R&D de-
creases the cost of research. The above policy changes increase the benefits of innovations and
raise the incentives for R&D, so more resources are reallocated toward conducting research ac-
tivities; namely R&D expenditures tend to rise. Hence, equation (19) implies that the economy
exhibits a higher arrival rate of successful innovation, leading to a higher rate of economic growth
g.18 These comparative statics for the subsidy rates are consistent with those in Barro and Sala-I-
Martin (2003) and Zeng and Zhang (2007).

18Recall that in Proposition 1, the steady-state growth rate of aggregate quality equals the counterparts of output
and consumption.
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Moreover, using (22), we can compute the steady-state rate of labor income tax such that

τ =
1

1− β

(
sy

1 + sy

)
+

β2

1− β

(
sx

1− sx

)
+

p
ζ

(
β

1− β

)(
1

1 + sy

) 1
1−β

(1− sx)
β

1−β sr, (31)

which is a composite function of the subsidy rates sy, sx, and sr, where the steady-state arrival
rate of innovation p is given by (29). In addition, using (31), we can derive the steady-state level
of labor supply such that

L(sy, sx, sr) =


1

σθ(1+η)
η(1−τ)(1−β)(1+sy)

[
1− β2

(
1+sy
1−sx

)
− β

1+σ(λ−1)

(
λ(1−β)
(1−sr)

(
1+sy
1−sx

)
− ρ

ζ

(
1+sy
1−sx

) −β
1−β

)]
− θ(σ− 1)



η
1+η

.

(32)
From the above analysis, it can be seen that in the case of a higher sy, sx, and sr, τ would increase
because heavier taxation is required to balance the government budget, and such a higher rate of
labor income tax would decrease the supply of labor, which is captured by the negative relation
between τ and L in (32). Nevertheless, a higher sy, sx, and sr raises the growth rate g as shown
in Proposition 2, and the enlarged production volume of output Yt induces higher demand for
labor L in equilibrium. Therefore, the overall effects of sy, sx, and sr on L depend on the relative
strength of these two opposing forces, and thus, seem analytically difficult to assess. We leave
this discussion to the numerical analysis later on.

4 Optimal policy analysis

In this section, we study the socially optimal solution that maximizes the welfare of the model
economy, followed by an analysis of the optimal policy regime showing how an appropriate joint
choice on subsidy rates can be made so as to replicate the first-best allocation.

4.1 Socially optimal solution

As for the first-best outcome, the social planner chooses a time path of consumption Ct and
labor supply Lt to maximize the households’ lifetime utility given by (1), subject to the resource
constraint Yt = Ct + Xt + Zt and the technology constraint given by

Q̇t =
ζ(λ− 1)Zt

Lt
, (33)

which is obtained by combining (19) and (28). Moreover, in the intermediate-good sector, the
socially optimal price pt(ν) in line ν equals the marginal cost of production βqt(ν). Therefore,
the demand for intermediate goods in line ν is given by

Xt(ν) = β
1

β−1 Lt. (34)
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Aggregating these demand functions across all industry lines yields the total expenditures on
the purchase of intermediate goods such that

Xt =
∫ 1

0
Pt(ν)Xt(ν)dν = β

β
β−1 QtLt. (35)

Next, the total output in the social optimum can be found by substituting (34) into (5), which is
given by

Yt =
(Lt)1−β

β

∫ 1

0
qt(ν)Xt(ν)

βdν = β
1

β−1 QtLt. (36)

Therefore, using (34), (36), and the resource constraint in (33), we obtain the dynamics of aggre-
gate quality such that

Q̇t =
ζ(λ− 1)

Lt

[
β

1
β−1 QtLt − β

β
β−1 QtLt − Ct

]
. (37)

Then the social planner’s solution can be derived by setting up the following current-value
Hamiltonian:

Ĥt(Ct, Lt, Qt, µ̂t) =

C1−σ
t

[
1− θ(1− σ)L

1+η
η

t

]σ

− 1

1− σ
+ µ̂t

{
ζ(λ− 1)

Lt

[
β

1
β−1 QtLt − β

β
β−1 QtLt − Ct

]}
,

(38)
where µ̂t is the costate variable associated with the constraint (37). Thus, the first-order conditions
are respectively given by

∂Ĥt

∂Ct
= 0⇒

[
1− θ(1− σ)L

1+η
η

]σ

C−σ
t =

ζ(λ− 1)
Lt

µ̂t; (39)

∂Ĥt

∂Lt
= 0⇒ ζ(λ− 1)µ̂t = θσ

(
1 + η

η

) [
1− θ(1− σ)L

1+η
η

]σ−1

C−σ
t L

2+ 1
η

t ; (40)

∂Ĥt

∂Qt
= µ̂tζβ

1
β−1 (1− β)(λ− 1) = ρµ̂t − ˙̂µt, (41)

with the trasversality condition limt→0 e−ρtµ̂tQt = 0. Multiplying (37) by µ̂t and multiplying (41)
by Qt, respectively, we can use (39) to obtain a differential equation for the control variable µ̂tQt

such that ˙̂µtQt + µ̂tQ̇t = ρµ̂tQt− 1, implying that µ̂tQt must jump immediately to its steady-state
value given by 1/ρ. This implies that the dynamical behavior of the model in the social optimum
is also characterized by saddle-point stability.

Moreover, by inserting (39) into (40), we can see that the first-best level of labor supply L∗t is
stationary such that

L∗ =
[

η

θ(σ + η)

] η
1+η

. (42)

Accordingly, combining the saddle-point stability condition with (37), (39), (41) implies that in
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the first-best outcome, variables −µ̂t, Qt, and Ct all grow at the same rate given by

g∗ =
ζβ

1
β−1 (1− β)(λ− 1)− ρ

σ
, (43)

which is again independent of the labor supply L∗.
Comparing the (steady-state) equilibrium rate of economic growth g in (30) and the first-best

rate of economic growth g∗ in (43) reveals that g can be higher or lower than g∗, depending on
the values of parameters {ζ, λ, β, ρ, σ} in g∗. This implication, which is well known in the Schum-
peterian growth model, is associated with various sources of R&D externalities. Specifically, a
higher ζ or λ implies a worsening of the surplus-appropriability problem and a higher β implies a
worsening of the business-stealing effect; both of these effects are a positive externality, making g∗

exceed g. In contrast, a higher ρ or σ implies a strengthening of the intertemporal-spillover effect,
which is a negative externality, making g∗ lower than g.19

4.2 First-best policy instruments

We consider a combination of policy instruments (including the form of subsidies and/or
taxes) that the policymaker can use to replicate the first-best optimal outcome. Given that both
the decentralized equilibrium as shown in Subsection 3.1 and the optimal outcome as shown
in Subsection 4.1 feature saddle-point stability, the optimal policy analysis in this subsection is
based on steady-state comparisons and no transitional dynamics are considered. Specifically,
comparing the decentralized equilibrium to the social optimum reveals that inefficiencies in the
decentralized setting arise from three layers of distortions as follows.

4.2.1 Monopoly pricing

The first distortion is present in the ratio of intermediate-good expenditures and total outputs
Xt/Yt. This ratio equals the relative importance of intermediate goods in final-good production
β in the social optimum where no policy interventions are involved, whereas it equals β2[(1 +

sy)/(1− sx)] in equilibrium where both subsidy rates for final-good production and the purchase
of intermediate goods are involved. It can be seen that without these policy instruments (i.e.,
sy = sx = 0), the ratio Xt/Yt in equilibrium is always lower than in the first-best outcome,
producing an allocation inefficiency. As shown in Acemoglu (2009), this distortion stems from
the monopoly rights protected by patents to preserve incentives for inventors to create higher
quality products. Thus, if these policy tools are set to satisfy the following condition:

1 + sy

1− sx
=

1
β

, (44)

19According to the conventional literature in quality-ladder growth models, overinvestment in R&D (and thereby a
suboptimally high rate of equilibrium growth) is explained by the presence of the business-stealing effect that arises
as the latest innovator destroys and/or appropriates previous incumbents’ rents. Nevertheless, a recent study by
Denicolò and Zanchettin (2014) argues that the possibility of excessive R&D in these models is attributed less to the
business-stealing effect than other effects such as monopoly distortion effects and the congestion effect.
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where the elasticity of product substitution 1/β measures the degree of monopoly pricing (i.e.,
the markup), then this layer of monopolistic distortion will be eliminated.

4.2.2 R&D externalities

The second distortion is present in the allocation of aggregate R&D expenditures Zt (relative
to total outputs), which determines the arrival rate of innovation p (i.e., equation (29)) and the
growth rate of aggregate quality (i.e., equation (30)) in the steady state. Given that the setting (1+
sy)/(1− sx) = 1/β holds the optimal ratio of Xt and Yt, the R&D subsidy rate sr is the feasible
policy lever that can adjust the equilibrium level of aggregate spending on R&D. Specifically,
when the value of sr induces g(sr)|(1+sy)/(1−sx)=1/β > (<)g∗, a too high (low) level of R&D
expenditures is attained in the decentralized equilibrium, producing an allocation inefficiency.
As shown in Subsection 4.1, this distortion stems from the presence of various types of R&D
externalities in the canonical Schumpeterian growth model (i.e., the inclusion of the surplus-
appropriability problem, the business-stealing effect, and the intertemporal-spillover effect), and
the wedge between g and g∗ is determined by parameter values that represent the overall impact
of these R&D externalities. Therefore, if the choice of the R&D subsidy policy is designed to
satisfy g(sr)|(1+sy)/(1−sx)=1/β = g∗, then this layer of distortion also will be eliminated. This
yields the first-best design of the R&D subsidy rate given by

s∗r =
(1− σ)ζ(λ− 1)(1− β)β

1
β−1 − ρ

[1 + σ(λ− 1)]ζ(λ− 1)(1− β)β
1

β−1 − ρ
. (45)

Notice that the value of σ (the inverse of IES) plays an important role in determining the sign
of s∗r in (45). Specifically, s∗r is negative (positive) for σ > (<)1− ρ/A, where A ≡ ζ(λ− 1)(1−
β)β

1
β−1 , implying that the first-best R&D policy can either tax or subsidize the aggregate research

spending.20 For example, when σ = 1 > 1− ρ/A (which is the benchmark case in our numerical
analysis), we have s∗r |σ=1 = 1/(1 − λA/ρ), which is negative given that the optimal growth
rate g∗|σ=1 = A− ρ is positive. Intuitively, when sr|σ=1 = 0, given that the optimal ratio of Xt

and Yt holds (i.e., (1 + sy)/(1− sx) = 1/β), the steady-state growth rate g|σ=1 becomes always
higher than the socially optimal counterpart g∗|σ=1, meaning that the negative R&D externalities
dominates the positive R&D externalities in the model. To remove this inefficiency, imposing an
R&D tax (i.e., s∗r |σ=1 < 0) becomes necessary for increasing the cost of research, thus reducing
the research incentives and the resulting R&D level to equate the steady-state growth rate and
the first-best growth rate.21

20It is straightforward to show that the denominator of s∗r in (45) (i.e., [1 + σ(λ − 1)]A − ρ) can only be positive
given that λ > 1 and A > ρ due to the positive rate of optimal growth g∗. Therefore, the sign of s∗r is determined by
the sign of its numerator (i.e., (1− σ)A− ρ), that is, s∗r < (>)0 when σ > (<)1− ρ/A.

21As for the implications for optimal R&D policy in scale-invariant growth frameworks, in the model of Segerstrom
(1998) with diminishing technological opportunities (DTO), either R&D taxes or subsidies are optimal for small-
sized innovations, where R&D taxes are optimal for sufficiently large-sized innovations. However, in the model of
Dinopoulos and Syropoulos (2007) with rent protection activities (RPA), R&D taxes are optimal for small- and large-
sized innovations, and R&D subsidies are optimal only for medium-sized innovations. This result still applies to the
model with both DTO and RPA, as shown in Şener (2008).

16



4.2.3 Consumption-labor tradeoff

The third distortion is present in the supply of labor Lt, which also determines the level of
consumption (relative to total outputs, i.e., C/Y) in the steady state via the consumption-labor
decision. To see this relation, combining (39) and (40) shows that the first-best level of labor
supply L∗ depends only on the structural parameters θ, σ and η such that

1 = σθ

(
1 +

1
η

) (L∗)
1+η

η

1− θ(1− σ)(L∗)
1+η

η

 . (46)

In addition, using (3), (14) and (16) shows that the steady-state level of labor supply L depends
on the subsidy rates sy, sx, sr and the labor income tax rate τ, in addition to other parameters:

(1 + sy)(1− β)(1− τ)

Ct/Yt
= σθ

(
1 +

1
η

) L
1+η

η

1− θ(1− σ)L
1+η

η

 , (47)

where L is given by (32), τ is given by (31), and using (14), (15), (25) and the resource constraint
expresses the ratio of consumption and final good such that

Ct

Yt
= 1− β2

(
1 + sy

1− sx

)
− pβ

ζ

(
1 + sy

1− sx

)− β
1−β

. (48)

Therefore, equations (46) and (47) imply that the presence of elastic labor introduces one addi-
tional layer of distortion, which comes from the use of labor income taxes and is determined by
the consumption-labor decision. Given that setting (1 + sy)/(1− sx) = 1/β holds the optimal
ratio of Xt and Yt and that sr = s∗r holds the optimal spending Zt on R&D, there is one degree of
freedom in the set of policy tools {sy, sx, sr} that can adjust the equilibrium level of labor supply
L. Specifically, when the choice of {sy, sx, sr} induces L(sy, sx, sr) > (<)L∗, too much (little) la-
bor is supplied in the decentralized equilibrium as compared to the social optimum, which also
produces an allocation inefficiency.22 Thus, if the policy mix {sy, sx, sr} is chosen to satisfy the
condition such that

L(sy, sx, sr) = L∗ =
[

η

θ(σ + η)

] η
1+η

, (49)

then the last layer of distortion will be removed and the socially optimal outcome can be attained
accordingly.

Further exploration of equation (49) yields the analytical solution to s∗y, which is given by

s∗y =
β

β
1−β (s∗r − 1)p∗

(β− 1)ζ
− 1, (50)

22For example, when there is no fiscal policy (i.e., sy = sx = sr = 0) in the market economy with σ = 1, the
equilibrium labor supply is given by L(1+η)/η = {η/[θ(1 + η)]}/{1 + βρ/[ζλ(1− β)]}. This produces an inefficient
supply of labor, since the equilibrium labor is smaller than the optimal labor given by (L∗)(1+η)/η = η/[θ(1 + η)],
giving rise to using subsidy tools to eliminate this distortion.
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where p∗ is obtained by setting (1 + sy)/(1− sx) = 1/β and sr = s∗r in (29). For the signs of
{s∗y, s∗x}, equation (50) implies that s∗y will be positive if ζ is sufficiently small. Moreover, s∗x can
be positive at the same time if s∗y < (1− β)/β. Our numerical exercise in Section 5 will show
that the mix of a negative rate of s∗r and positive rates of {s∗y, s∗x} applies to a wide range of
parametrization.

Observing that both s∗r and p∗ are unaffected by η and θ, we find that the optimal design of
subsidy rates, namely the combination of s∗y, s∗x and s∗r , is independent of the Frisch elasticity of
labor supply and the leisure preference.23 To see the intuition, let

L̃∗(η, θ) =

 (L∗)
1+η

η

1− θ(1− σ)(L∗)
1+η

η

 ,

L̃(η, θ) =

 L
1+η

η

1− θ(1− σ)L
1+η

η

 .

Combining (46), (47) and (48) yields

L̃∗(η, θ)

L̃(η, θ)
=

1− β2[(1 + sy)/(1− sx)]− p(β/ζ)[(1 + sy)/(1− sx)]
− β

1−β

(1 + sy)(1− β)(1− τ)
. (51)

It is straightforward to see that the right-hand side of (51) is independent of η and θ. Given
other model parameters, varying these two parameters would affect the level of L̃∗(η, θ) and
L̃(η, θ) by the same proportion, but not their ratio. In addition, eliminating the distortion in the
consumption-leisure tradeoff simply requires choosing the policy instruments to ensure that the
right-hand side of (51) is equal to unity.

Nevertheless, it is worth emphasizing that the presence of parameters η and θ regulates that
labor needs to be supplied elastically, resulting in an additional source of distortions caused
by the consumption-labor tradeoff. Hence, replication of the socially optimal allocation would
require the joint use of all three subsidy instruments. Comparing to the case with inelastic labor,
in Section 6, we show that the presence of elastic labor (in terms of the labor supply elasticity
η) in the current model is crucial for determining the unique optimal design of three subsidy
instruments, which helps to reduce welfare losses. Additionally, the magnitude of parameters η

and θ plays an important role in determining the steady-state allocation of labor, consumption
and R&D investment, and the steady-state level of social welfare. These results will be quantified
in the numerical analysis.

Summarizing the above results yields the following proposition.

Proposition 3. The economy can achieve the first-best outcome in equilibrium with an optimal mix of
policy instruments {sy, sx, sr} determined by (44), (45), and (49).

Proof. Proven in the text.
23To be precise, the socially optimal combination of policy instruments is independent of the Frisch elasticity of labor

supply and the leisure preference when these two parameters take strictly positive values. When η = 0, however, labor
is supplied inelastically. As shown in Section 6, the design of optimal policy instruments under inelastic labor supply
would be different.
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This result is in a sharp contrast to that in Zeng and Zhang (2007). In their variety-expansion
model with distortionary taxes and elastic labor supply, subsidies to the production of outputs
and the purchase of intermediate goods are equivalent in terms of their growth and welfare
effects. Therefore, the two subsidy rates are integrated to become an effective subsidy rate to
production (i.e., s f in their context), which reduces one degree of freedom in policy implementa-
tion. In their model, only two subsidy tools (i.e., the production subsidy and R&D subsidy) can
be used to optimize the equilibrium allocation. In the presence of three distortions as described
above, the optimal combination of policy tools {s f , sx} only generates the second-best solution.
Even when an additional policy lever, namely consumption tax τc, is included for use in their
model, in addition to the optimized rates of manufacturing subsidy s f and R&D subsidy sr, the
social optimum still would not be achievable with the income tax rate τ being smaller than 1.24

Nevertheless, in our quality-ladder model, the subsidy rate to output production sy and that
to the user cost of intermediate goods sx operate separately. Hence, optimizing a combination
of subsidy tools {sy, sx, sr} suffices to eliminate all distortions in our model.25 With the current
framework, this result holds for a wide range of parametrization in which the income tax rate τ

does not exceed unity, as shown in the next section.

5 Quantitative analysis

In this section, we calibrate the model to the US data to perform a quantitative analysis. First,
we numerically evaluate the effects of subsidy instruments in terms of growth maximization.
Second, we quantify the effects of subsidy instruments in terms of welfare maximization.26 In
each exercise, we consider (a) the case where a mix of all instruments is implemented, (b) the
case where a single instrument is implemented, and (c) the case where a combination of two
instruments is implemented, respectively.27

5.1 Calibration

To perform this numerical analysis, the strategy is to assign steady-state values to the follow-
ing structural parameters {σ, η, ρ, β, ζ, λ, θ, sy, sx, sr}. In the benchmark analysis, we follow the

24This setting in Zeng and Zhang (2007) implies that one policy instrument in their model can be feasibly set with
negative values, as in our current model.

25In the blocking-patent model of Yang (2018) with subsidization, given elastic labor supply and a lump-sum tax,
distortions from monopoly pricing and the consumption-labor tradeoff are consolidated to one layer of distortion
from the (inverse) supply of labor in manufacturing terms. In addition to the distortion from R&D externalities, by
fixing the patent-policy regime, an optimal mix of two subsidy rates (to production and R&D) will suffice to recover
the first-best outcome.

26Note that the main focus of these quantitative exercises is not on the sizes of the growth-maximizing and welfare-
maximizing subsidy/tax rates, but rather on the comparisons in the policy effectiveness for growth and welfare among
the decentralized equilibrium and the outcomes with the optimal policy instrument(s).

27There are two main purposes of considering the use of a single instrument and a mix of two instruments in
this section. First, this analysis aims to highlight how quantitatively efficient each subsidy instrument is in terms of
promoting growth and raising welfare. Second, the results obtained in this analysis serve as counterparts to those in
Zeng and Zhang (2007) who perform a similar numerical analysis.
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literature (e.g., Guvenen 2006) to set the IES in consumption σ to unity.28 As for the magnitude
of the Frisch elasticity, this study follows Trabandt and Uhlig (2011) and Annicchiarico et al. (2022)
to choose η = 1, which is consistent with the survey evidence in Kimball and Shapiro (2008).29

We choose a standard value of 0.05 for the discount rate ρ. As for the production parameter,
we calibrate the value of β by setting the markup ratio Pt(ν)/[ψqt(ν)] = 1/β to 1.5, which is in
line with the recently estimated markup values of the US economy considered in Barkai (2020)
and Loecker et al. (2020). As for the R&D productivity, we calibrate the value of ζ by following
Zeng and Zhang (2007) to choose the average growth rate of GDP (i.e., g in (30)) in the US for
the last 30 years, which has been roughly 3%, according to the Conference Board Total Economy
Database. As for the step size of quality improvement, we calibrate the value of λ by setting the
time between arrivals of innovation 1/p to about 3 years, as in Acemoglu and Akcigit (2012). As
for the leisure preference parameter, we calibrate the value of θ by matching the standard mo-
ment of labor supply L to 1/3. Finally, given that the US has used an R&D subsidy but not the
manufacturing subsidy (including subsides to the production of final goods and to the purchase
of intermediate goods) in the past three decades, we choose the market values of sy = sx = 0
and follow Grossmann et al. (2013) to calibrate the value of sr by targeting the current US R&D
subsidy rate, which is approximately 6.6% (OECD 2009, 2013). Table 1 summarizes the values of
parameters and variables in this quantitative exercise.

Table 1: Calibration

Targeted Moments g p L
0.030 0.333 0.333

Parameters σ η ρ β ζ λ θ sy sx sr
1.0 1.0 0.050 0.667 1.063 1.090 4.151 0.000 0.000 0.066

5.2 Numerical results

Before proceeding to the cases in which policy instruments are employed, this analysis starts
from comparisons in the growth rate and welfare level between the decentralized equilibrium
in which realistic values are calibrated (i.e., the benchmark case) and an extreme scenario in
which no policy tools are introduced (i.e., the no-policy case). The purpose of this exercise is to
quantify the differences in growth and welfare of the equilibrium level in our model as compared
to in the original quality-ladder model. The growth rates and welfare levels of these two cases
are shown in Table 2. It can be seen that as compared to our benchmark case, the growth rate
declines by 0.230% (percentage point) and the welfare level declines by 0.08% (percent change)

28The benchmark value of σ implies that the absolute value of optimal R&D subsidy s∗r does not exceed 100%.
Indeed, empirical evidence on the magnitude of IES in the existing literature is mixed (e.g., in a detailed survey by
Thimme 2017). Therefore, as will be shown, we consider other permissible values for σ as robustness checks.

29This value of the Frisch elasticity η is also close to the mean value of estimates in Smets and Wouters (2007) and
in Hall (2009) (i.e., 0.52 and 1.9, respectively).
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when all policy interventions are dismantled.30 31 Notice that in this comparison, the equilibrium
subsidy rates to final-good production and the purchase of intermediate goods are identical in
the benchmark case and in the no-policy case (i.e., sy = sx = 0). Therefore, the growth and
welfare differences between the two cases are only driven by the presence of subsidies to R&D,
which effectively stimulates the arrival rate of innovation in equilibrium, as shown in (29). This
result tends to justify the use of R&D subsidies in promoting growth and raising welfare with
the current US policy in the absence of the use of any manufacturing subsidies.

Moreover, from the no-policy case to the benchmark case, the labor income tax rate τ rises
from 0 to 4.14% to finance the use of R&D subsidies sr, and the labor supply L rises slightly from
0.3330 to 0.3333 in response. Corresponding to the discussion in Subsection 3.1, this result implies
that the effect of sr through the growth channel that stimulates the demand for production labor
dominates the counterpart through the taxation channel that stifles the supply of labor.

Table 2: Growth and welfare under the benchmark case and the no-policy case

Benchmark g U L C0 τ
(sy = sx = 0, sr = 0.066) 0.0300 −32.2895 0.3333 0.1732 0.0414

No-policy g U L C0 τ
(sy = sx = sr = 0) 0.0277 −32.3054 0.3330 0.1809 0.0000

5.2.1 Growth-maximizing subsidization

According to Proposition 2, a higher rate of subsidies to the production of final goods (i.e.,
sy), the purchase of intermediate goods (i.e., sx), and R&D (i.e., sr) leads to a quantitatively
identical effect on the steady-state rate of economic growth (namely, a higher g). Therefore, this
subsection quantifies and compares the size of the effect of each subsidy instrument in terms of
growth maximization.

First, we consider the case in which the three policy instruments are used. As shown in
Table 3, the maximized rate of economic growth g, conditional on the baseline calibration, is
10.74% and the growth-maximizing rates of subsidy are given by sy = 0.445, sx = 0.045, and
sr = 0.010, respectively. It is found that the significant increase by 7.74% (percentage point) in g
is mainly driven by the use of subsidies in manufacturing sy and sx. It can be seen that among
these growth-maximizing rates of subsidy, sy is the largest whereas sr is the smallest in terms
of magnitude, implying that sr tends to be less effective in enhancing economic growth than
sy and sx. In other words, in this model, the benefit of innovations is much more sensitive to
the increase in monopolistic profits (due to more production sales in final goods) rather than
the reduction in research costs. As compared to the benchmark case, the large growth effect
significantly stimulates the demand for labor L in manufacturing, and the labor income tax rate
τ also rises dramatically to finance the higher level of subsidy expenditure. In addition, Table

30See Appendix A.2 for the derivation of the steady-state welfare function. The welfare difference is expressed as
the usual equivalent variation in consumption flow such that exp(ρ∆U)− 1, where ∆U denotes the difference in the
steady-state welfare.

31In our welfare analysis, the initial aggregate quality index Q0 in (A.20) is set to unity. Accordingly, the term C0 is
interpreted as the consumption level in the initial period (t = 0) normalized by the aggregate quality index.
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3 reveals that using all subsidy tools generates excess growth compared to the growth rate of
5.76% in the social planner’s solution (which will be estimated in Subsection 5.2.2). It is also
worth noting that the model implication on the growth-maximizing policy instruments is largely
robust to setting σ to 2, an equally commonly considered value in the literature. With a lower
IES, however, the maximized growth rate is potentially higher (11.49%), whereas the equilibrium
labor becomes lower (0.7896).32

Table 3: Growth maximization under a combination of all
instruments

Benchmark calibration g L τ
(sy = 0.445, sx = 0.045, sr = 0.010) 0.1074 0.9170 0.9935

σ = 2 g L τ
(sy = 0.365, sx = 0.110, sr = 0.040) 0.1149 0.7896 0.9949

Second, we consider the case in which only a single subsidy instrument is used. The result
is shown in Table 4, which presents the situations of growth maximization for each subsidy
tool.33 Specifically, under the growth-maximizing rate of sy, the growth rate is 10.32%, whereas
under the growth-maximizing rate of sx, the growth rate is 10.28%. Nevertheless, under the
growth-maximizing rate of sr, the growth rate is 7.8%. This result implies that when only a
single subsidy instrument is implemented to stimulate growth, subsidizing R&D (the purchase
of final goods) is the least (most) effective; this policy implication differs from the comparison in
growth effectiveness of subsidy instruments in Zeng and Zhang (2007), in which R&D subsidy
is more growth-enhancing than the other subsidies. Additionally, the above analysis justifies the
fact in Table 3 that the growth-maximizing rate of sy (sr) is the largest (smallest) among the three
subsidy tools if the choice of all tools becomes available.

Table 4: Growth maximization under a single instrument

Subsidies to production of final goods g L τ
(sy = 0.499, sx = 0, sr = 0) 0.1032 0.0772 0.9987

Subsidies to purchase of intermediate goods g L τ
(sy = 0, sx = 0.332, sr = 0) 0.1028 0.9554 0.6627

R&D subsidies g L τ
(sy = 0, sx = 0, sr = 0.612) 0.0780 0.0670 0.9987

Finally, it is interesting to see how the growth effect changes when a mix of any two sub-
sidy instruments is used. Table 5 displays the growth-maximization solutions for three different
combinations of subsidy rates accordingly. It can be seen that the three strategies of policy com-

32We do not conduct a sensitivity analysis by varying the Frisch elasticity and leisure preference, because equation
(30) shows that the BGP growth rate is independent of η and θ, and the change in the equilibrium labor, while keeping
growth-maximizing subsidies the same, is only of the second-order importance.

33In this numerical analysis, to ensure that the consumption level is positive and that the labor supply is bounded
between 0 and 1, we restrict the range of sy to [−0.99, 0.499], of sx to [−0.99, 0.332], and of sr to [−0.99, 0.612],
respectively.
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binations produce similar rates of growth; they are all higher than the growth rates by using a
single subsidy tool but lower than the growth rate by using the three tools together. Notice that
the policy combinations with subsidization to R&D generate lower growth rates than the one
without it, which confirms the previous finding that sr is the least effective to enhance growth.
In particular, subsidizing the mix of intermediate goods production and R&D yields the low-
est growth-maximizing rate, whereas subsidizing the manufacturing factors yields the highest
growth-maximizing rate.

Table 5: Growth maximization under a combination of two instruments

Subsidies to manufacturing g L τ
(sy = 0.410, sx = 0.070, sr = 0) 0.1070 0.9349 0.9727

Subsidies to production of final goods and R&D g L τ
(sy = 0.475, sx = 0, sr = 0.050) 0.1035 0.0270 0.9998

Subsidies to purchase of intermediate goods and R&D g L τ
(sy = 0, sx = 0.300, sr = 0.135) 0.1033 0.9706 0.7144

5.2.2 Welfare-maximizing subsidization

Optimizing a mix of all instruments. The analysis now quantifies the effects of welfare-maximizing
subsidies when the three policy instruments {sy, sx, sr} are implemented jointly, as displayed in
Table 6. Using our benchmark calibration, the optimal mix of all subsidy instruments is given by
s∗y = 0.400, s∗x = 0.067, and s∗r = −0.743. Recalling Proposition 3, the use of this optimal mix of
subsidy rates induces the decentralized equilibrium to achieve the first-best solution. Intuitively,
the first-best outcome in this model is restored by adjusting three policy levers to remedy three
distortions occurring in the decentralized equilibrium. First, given sy = sx = 0 in equilibrium,
the fraction (1 + sy)/(1− sx) = 1 implies that the subsidy rate to the production of final goods
is less compatible with the subsidy rate to the purchase of intermediate goods in the sense that
(1+ sy)/(1− sx) is smaller than its optimal value 1/β. This is the first inefficiency stemming from
the distorted ratio of intermediate-good expenditure and total outputs Xt/Yt in equilibrium, in
which subsidies to manufacturing are absent. Second, there is a layer of inefficiency stemming
from the allocation on the aggregate R&D spending, because with the suboptimal subsidy rate to
R&D (i.e., sr = 0.066), the equilibrium growth rate of g = 0.030 differs from the socially optimal
growth rate of g∗ = 0.0576. Third, there is another layer of inefficiency stemming from the supply
of labor, since in the presence of distortionary labor income tax τ, the suboptimal subsidy rates
{sy, sx, sr} yield a level of labor supply at L = 0.333 in equilibrium, which is smaller than the
socially optimal level at L∗ = 0.3471. Thus, when the subsidy rates to manufacturing and the
subsidy rate to R&D are adjusted simultaneously to their first-best levels {s∗y, s∗x, s∗r }, the above
layers of distortions are eliminated by reallocating the resources in the use of final goods and in
the supply of labor. As a result of correcting inefficiencies, the increment in welfare from the de-
centralized equilibrium to the social optimum is considerable (approximately by 35%). The result
on an increase in subsidies to manufacturing and labor supply is consistent with the counterpart
in Wan and Zhang (2021).
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Table 6: Welfare maximization under a combination of all instruments

All subsidies g∗ U∗ L∗ C∗0 τ∗

(s∗y = 0.400, s∗x = 0.067, s∗r = −0.743) 0.0576 -21.1008 0.3471 0.1815 0.6679

Two interesting points around the above results are worthwhile discussing. First, the first-
best rate of R&D subsidy s∗r becomes negative (i.e., an R&D tax) under the benchmark calibration.
This is because when the subsidy rates to manufacturing are fixed at their first-best levels (i.e.,
s∗y = 0.400 and s∗x = 0.067), the equilibrium outcome with no R&D subsidies (i.e., sr = 0)
will generate a higher growth rate to the economy as compared to the social optimum (i.e.,
g = 0.1036 > g∗ = 0.0575). Hence, to depress the equilibrium R&D, the level of sr has to
be lowered to be smaller than 0. The mechanism for the first-best rate of R&D subsidy to be
negative in this model is similar to the mechanism for the first-best rule of profit division to be
positive in Yang (2018), who considers the effects of blocking patents in a quality-ladder model;
a negative R&D subsidy rate and a positive profit-division rule play the same role in mitigating
the R&D level and the growth rate. In other words, achieving the social optimum in quality-
ladder models would require a policy instrument that can be growth-depressing, since the class
of quality-ladder models features the possibility of overinvestment in R&D that could lead to
suboptimally excess growth. This is in a sharp contrast to the policy analysis of subsidization in
variety-expansion models.34

Additionally, the majority of welfare improvements moving from the decentralized equilib-
rium to the social optimum stems from remedying the distortions in production. This can be seen
in the following policy experiment that decomposes the distortions present in the current frame-
work. Consider an intermediate case where the subsidy rates are given by sy = 0, sx = 0.333, and
sr = −0.743, and the resulting level of welfare is U = −21.3739. In this case, the markup ratio
and the equilibrium labor supply L attain their first-best levels of 1/β and L∗, respectively. There-
fore, given that the ratio (1 + sy)/(1− sx) in the intermediate case is identical to its counterpart
in the first-best case (which is 1/1.5), the welfare difference between the first-best case and the
intermediate case stems from the distortion in R&D externalities, denoted by ξ1 = 1.37%. In ad-
dition, it is straightforward to see that the welfare difference between the intermediate case and
the benchmark case stems from the distortions in monopoly pricing and labor supply, denoted
by ξ2 = 74.97%. Accordingly, it is obvious that the magnitude of ξ2 is much more significant
than that of ξ1.35

Sensitivity. To examine the sensitivity of the above numerical analysis, we consider several
exercises with respect to the structural parameters {β, ρ, λ, ζ, θ, σ, η}. First, we vary the value of β

34For example, in Barro and Sala-I-Martin (2003) with inelastic labor and lump-sum taxes, using a subsidy to the
production of final goods or to the purchase of intermediate goods alone, either of which is growth-enhancing, can
induce the decentralized equilibrium to achieve the social optimum, given that the equilibrium growth rate in their
setting is lower than the socially optimal growth rate. In Zeng and Zhang (2007) who consider the model of Barro and
Sala-I-Martin (2003) with elastic labor and distortionary taxes, optimizing a combination of analogous subsidy tools
in addition to a consumption tax, with the labor income tax being smaller than 1, cannot eliminate all distortions to
achieve the first-best outcome.

35This finding is consistent with Nuño (2011) and Yang (2018), both of whom argue that most of the welfare losses
in the decentralized equilibrium of R&D-based growth models are attributed to the presence of suboptimal choices of
policy tools that affect the resource allocation in the monopolistic intermediate-good sector.
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to 0.6849, so that the implied markup ratio 1/β = 1.46 is consistent with the average level of the
empirical estimates in Loecker et al. (2020) for US firms during 1996–2005. Second, the values of
{ρ, λ, ζ, σ} are changed, so that the resulting optimal growth rate g∗ is maintained at the rate of
0.0501, which is the value generated by setting β alone to 0.6849 in the first sensitivity exercise.36

Additionally, we recalibrate the model by using the leisure preference parameter θ = 3 and the
Frisch elasticity η = 3, respectively. Table 7 presents the welfare level U∗, the growth rate g∗, the
labor supply L∗, the consumption level C∗0 , and the tax rate τ∗, respectively, under the alternative
sets of structural parameters.

It can be seen that, the qualitative pattern and the quantitative magnitude of the main results
are quite robust. First, the optimal subsidy rate to output production s∗y continues to be the largest
among the policy instruments, whereas the optimal subsidy rate to R&D s∗r is still negative. This
result continues to imply that s∗y and s∗x are the two subsidy rates that eliminate most of the
inefficiencies. Second, under the new parameter settings of ζ, λ and β, the welfare level U∗

declines, as compared to the counterpart in the benchmark first-best case as shown in Table 6.
Although a higher σ tends to raise welfare by increasing C∗ and decreasing L∗, it amplifies the
negative welfare effect brought by a lower g∗, so the level of U∗ still declines. Nevertheless,
under a higher value of ρ, the considerable rise in C∗0 generates a sufficiently positive welfare
effect, which dominates the negative welfare effect from the decrease in g∗. Hence, the resulting
level of welfare U∗ increases in this case. As for the parameter θ, a lower value implies less
disutility from each unit of labor supply, leading to higher L∗ and C∗0 , which raises welfare. In
the meantime, the optimal combination of subsidies, along with the growth rate of first-best
allocation, is independent of θ. Hence, a lower θ unambiguously improves the social welfare.
Similarly, the optimal subsidy rates and the growth rate are unaffected by varying η. However, a
higher Frisch elasticity, keeping θ at the same level as in the benchmark case, drastically reduces
L∗ and C∗0 , resulting in a significant decline in U∗.

It is worth pointing out that the above welfare analysis aims to numerically explore the chan-
nels through which the three subsidies, when combined as a unified policy tool, are translated
into welfare gains in a canonical quality-ladder framework. The magnitude of the optimal sub-
sidy rates reported in the baseline case, however, may not yield direct policy implications on the
desirable level of the real-world subsidy and tax rates, since they indeed hinge critically upon
the calibrated model parameters. In particular, the optimal tax rate on R&D activities under the
baseline analysis seems unusually high, which might lead to a misinterpretation that our study
suggests a dramatic tax reform that is seemingly impossible to implement. In fact, we perform an
additional analysis and find that the optimal subsidy rates are largely affected by the parameters
λ and β. As shown in Table 8, once the value of λ is raised to 1.2 (implying that the arrival rate of
successful innovation equals 0.15), this alternative calibration suggests that the optimal R&D tax
declines to 52.6%. Further increasing the value of λ to 1.4 sharply reduces the magnitude of the
optimal R&D tax rate to 34.4%. However, it is worth emphasizing that the key model implications
remain consistent with the baseline analysis. Regarding the parameter β, this study considers
the upper and lower bound of the markup value (i.e. 1.2 and 1.6, respectively) in Barkai (2020).

36Notice that from (43), the parameter values of {β, ρ, λ, ζ, σ} determine the socially optimal growth g∗. Given that
g∗ is nonlinear in β, it is technically convenient to firstly set the alternative value of β, yielding a new value of g∗.
Then the alternative values of other values are set to match this implied first-best growth rate in order to compare the
welfare effects of these parameters in removing distortions.
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Table 7: Sensitivity checks: varying the values of structural parameters

Parameters affecting growth rate

β = 1/1.46 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.349, s∗x = 0.076, s∗r = −0.845) -24.0751 0.0501 0.3471 0.1815 0.6299

ζ = 0.9891 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.386, s∗x = 0.076, s∗r = −0.845) -22.6426 0.0501 0.3471 0.1949 0.6397

λ = 1.0838 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.393, s∗x = 0.072, s∗r = −0.854) -22.6426 0.0501 0.3471 0.1949 0.6415

ρ = 0.0574 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.370, s∗x = 0.086, s∗r = −0.960) -20.8049 0.0501 0.3471 0.2085 0.6104

σ = 1.1483 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.370, s∗x = 0.086, s∗r = −0.960) -25.9256 0.0501 0.3349 0.2011 0.6104

Parameters NOT affecting growth rate

θ = 3 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.400, s∗x = 0.067, s∗r = −0.743) -17.8539 0.0576 0.4082 0.2135 0.6679

η = 3 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.400, s∗x = 0.067, s∗r = −0.743) -30.6010 0.0576 0.2771 0.1449 0.6679

In addition to the observation that a higher markup ratio reduces the optimal R&D tax rate, it is
also found that promoting social welfare relies more heavily on subsidizing final (intermediate)
goods when the markup ratio 1/β is relatively large (small). In particular, when λ = 1.4 and
β = 1/1.6, the model-implied s∗r is merely -32.7%, and the optimal subsidy rate to final goods s∗y
is almost three times as large as s∗x.37

Finally, we quantify the effects of two important parameters σ and η in the utility function (1).
In Figure 1, we plot the relation between the welfare-maximizing subsidy rates and σ, the inverse
of the IES parameter. It is shown that a higher value of σ implies that it is socially optimal to
tax R&D activities more heavily. This is consistent with the implication in Section 4.1: the R&D
externality caused by a higher σ makes the optimal growth rate g∗ lower than the equilibrium
growth rate g, so a higher optimal R&D subsidy rate s∗r is required for removing this inefficiency.
In particular, when σ = 0.57, the model-implied optimal R&D tax rate is merely 10%. It is
also found that a larger value of σ is associated with a higher (lower) optimal subsidy rate to
the purchase of intermediate goods s∗x (final-good production s∗y). In addition, since our model
suggests that both the optimal subsidy rates and the economic growth rate are unaffected by the
Frisch elasticity, Figure 2 plots welfare, labor and consumption in the first-best allocation against
the structural parameter η. It is seen that both L∗ and C∗0 are increasing (at a diminishing rate)
in η. However, the disutility from working seems to outweigh the gain in utility from additional
consumption, which leads to a negative relation between U∗ and η.38

37All quantitative exercises in Table 8 recalibrate θ when alternative values of λ and β are considered, which causes
the equilibrium labor L∗ to vary.

38The quantitative practice reported in Figures 1 and 2 recalibrate θ and ζ for each alternative value of σ and η
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Table 8: Sensitivity checks: effects of λ and β on optimal subsidies.

λ = 1.2 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.342, s∗x = 0.105, s∗r = −0.526) -17.5286 0.0708 0.3575 0.1664 0.6917

λ = 1.4 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.294, s∗x = 0.138, s∗r = −0.344) -12.3058 0.0896 0.3685 0.1485 0.7232

λ = 1.2; β = 1/1.2 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.047, s∗x = 0.128, s∗r = −0.639) -36.6257 0.0569 0.3636 0.0846 0.5532

λ = 1.2; β = 1/1.6 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.441, s∗x = 0.100, s∗r = −0.498) -13.4387 0.0754 0.3560 0.1864 0.7232

λ = 1.4; β = 1/1.2 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.005, s∗x = 0.163, s∗r = −0.407) -32.1426 0.0735 0.3771 0.0760 0.5971

λ = 1.4; β = 1/1.6 U∗ g∗ L∗ C∗0 τ∗

(s∗y = 0.391, s∗x = 0.131, s∗r = −0.327) -7.9662 0.0949 0.3663 0.1661 0.7518
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Fig. 1. Effects of σ on welfare-maximizing subsidy rates

Optimizing a single instrument. Next, we consider the cases in which only one single instru-
ment is exploited. Given the benchmark calibration, Table 9 presents the details on welfare
maximization by optimizing each subsidy tool. This result of welfare maximization implies that
when only a single subsidy instrument is adopted to promote welfare, subsidizing R&D (the
production of final goods) is least (most) effective. The reason is as follows. Most of inefficiencies
in this model are realized by correcting the distortions in monopoly pricing and labor supply,

considered, which is different from the sensitivity analysis in Table 7.
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Fig. 2. Effects of η on welfare, labor and consumption

mainly through the use of sy and sx.39 Therefore, when the subsidy rate is implemented alone,
sy and sx tend to be more welfare-effective than sr, given that the latter is used to mainly correct
the distortion brought by R&D externalities.40 This policy implication again differs from the
comparison in welfare effectiveness of subsidy instruments in Zeng and Zhang (2007), in which
R&D subsidy can be more welfare-improving than the other subsidies.

Table 9: Welfare maximization under a single instrument

Subsidies to production of final goods g U L τ
(sy = 0.308, sx = 0, sr = 0) 0.0672 -24.1517 0.3263 0.7064

Subsidies to purchase of intermediate goods g U L τ
(sy = 0, sx = 0.224, sr = 0) 0.0641 -24.5182 0.3951 0.3849

R&D subsidies g U L τ
(sy = 0, sx = 0, sr = 0.060) 0.0298 -32.2893 0.3333 0.1740

Optimizing a mix of two instruments. We also consider a policy experiment in which a mix
of two instruments is optimized. Table 10 reports the quantitative implications of the optimal
policy combinations under the benchmark parametrization. Specifically, subsidies to manufac-

39Similar to the analysis of growth maximization, this welfare-maximization analysis justifies our findings in Table
6 such that the welfare-maximizing rate of sy (sr) is the largest (smallest) among the three subsidy tools if the choice
of all tools becomes available.

40The welfare improvements from the decentralized equilibrium to the outcomes by optimizing the subsidy to
output production and to the purchase of intermediate goods are significantly large (which are 50.21% and 47.49% of
consumption, respectively), whereas the counterpart by optimizing R&D subsidy alone is marginally small (which is
roughly 0.001% of consumption).
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turing (namely the combination of sy and sx) yield a lower level of welfare than those under the
combination of sx and sr and under the combination of sy and sr.

It is obvious that an optimal mix of two subsidy rates is substantially welfare-improving
than the decentralized equilibrium and the outcomes optimizing a single subsidy. For example,
the welfare level under the combination of sy and sx, which is the lowest one among the three
combinations of any two subsidies, is higher than the welfare level under the decentralized
equilibrium by 50.76% of consumption. However, the welfare level under this combination is
higher, merely by 0.37% of consumption, than the welfare level under optimizing sy alone, which
is the largest one among the outcomes using a single subsidy. Moreover, the welfare level under
an optimal mix of two subsidy rates is considerably lower than the counterpart under the optimal
combination of three subsidy rates (i.e., the social optimum).41

Table 10: Welfare maximization under a combination of two instruments

Subsidies to manufacturing g U L τ
(sy = 0.230, sx = 0.060, sr = 0) 0.0673 -24.0785 0.3478 0.6461

Subsidies to production of final goods and R&D g U L τ
(sy = 0.495, sx = 0, sr = −0.730) 0.0574 -21.2145 0.3214 0.7309

Subsidies to purchase of intermediate goods and R&D g U L τ
(sy = 0, sx = 0.310, sr = −0.695) 0.0531 -22.0221 0.4145 0.2314

Notice that among the three combinations of two policy instruments, the combinations with
subsidies to R&D (namely either subsidizing output production sy and R&D sr or subsidizing
the purchase of intermediate goods sx and R&D sr) are more welfare-enhancing than subsidies
to manufacturing only (i.e., subsidizing output production sy and the purchase of intermediate
goods sx). This finding is in line with the argument in Zeng and Zhang (2007): the joint use of
subsidies is to take advantage of their relative strength in correcting different types of distortions.
Specifically, subsidies to manufacturing tend to be more effective in eliminating the distortions
from monopoly pricing and the consumption-labor tradeoff, both of which are considered as the
efficiency losses related to production (i.e., the static distortion), whereas subsidies to R&D tend
to be more effective in eliminating the distortion from R&D externalities, which is considered
as the efficiency losses related to innovation (i.e., the dynamic distortion). As a result, mixing
subsidies that remedy different types of inefficiencies (i.e., inefficiencies from both production
and innovation) does better than mixing subsidies that remedy the same type of inefficiencies
(i.e., inefficiencies from only production).

6 Discussion on optimal subsidies with inelastic labor supply

The analysis above suggests that the economic growth rate and the optimal subsidy rates are
independent of the Frisch elasticity of labor supply η. In this section, however, we show that the

41The welfare level under the combination of sy and sx, the combination of sx and sr, and the combination of sy and
sr, is lower than the welfare level under the socially optimal outcome by 13.83%, 0.57%, and 4.50% of consumption,
respectively.
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setting of elastic labor supply is of central importance to the design of the welfare-maximizing
subsidy instruments.

In the literature, the Frisch elasticity may take various values depending on the measurement
approach. Empirical studies using micro-level data typically report low estimates of the Frisch
elasticity (i.e. below 0.5), whereas the estimates in macroeconomic analysis vary in a wider
range.42 Empirical evidence favoring low values of the Frisch elasticity might motivate theorists
to simplify their analytical framework by assuming inelastic labor supply. However, our analysis
below shows that this simplifying assumption tends to create bias at least in the design of the
optimal subsidy rates under our theoretical model. In particular, we find that it is important
to distinguish the case with low elasticity of labor supply (i.e. small value of η) from the case
with completely inelastic labor supply (i.e. η = 0). If labor is supplied with low elasticity but
not completely inelastically, a variant of our model featuring inelastic labor supply would not
uniquely pin down the optimal combination of s∗y, s∗x and s∗r . Consequently, policymakers would
have to make arbitrary choices on certain subsidy rates, and welfare losses are likely to occur.

When labor supply is inelastic, the utility maximization problem facing the households is
given by:

Ut =
∫ ∞

t=0
e−ρt C1−σ

t − 1
1− σ

dt, (52)

subject to the budget constraint

Ȧt = rt At + WtL− Ct + Γt, (53)

where Γt denotes lump-sum tax (or transfer) and labor L is inelastically supplied. Other sectors in
the modeled economy remain unchanged. It is straightforward to show that replicating the first-
best allocation requires elimination of distortions stemming from monopoly pricing and R&D
externalities, and the conditions to be satisfied are exactly the same as those in (44) and (45).
Due to inelastic labor supply, however, distortions induced by the consumption-leisure tradeoff
no longer exist. In addition to an explicit derivation of the inelastic-labor model, one can also
see this implication from the analytical expressions for steady-state labor in the decentralized
equilibrium and its first-best counterpart in the baseline model. Letting η = 0 in (32) and (42),
we see that the values of L and L∗ are both equal to unity (i.e., 00 = 1), independent of the policy
instruments and the structural parameters.

Hence, under inelastic labor supply, we need to pin down three policy instruments based
on two equations. We see that the optimal subsidy rate to R&D is still uniquely determined by
(45), which is identical to that in the elastic-labor model. For subsidies to the manufacturing
industries, however, the inelastic-labor model implies that any combination (sy, sx) satisfying
(1 + sy)/(1− sx) = 1/β is socially optimal. In sharp contrast, the elastic-labor model suggests
that s∗y and s∗x are uniquely determined, given that they are important policy instruments affecting
the consumption-labor tradeoff. Therefore, it is clear that policymakers might misuse the policy
instruments if they consider low elasticity of labor supply as perfectly inelastic labor supply.

Using the benchmark calibration, we assess the potential welfare losses conditional on 5

different values of the Frisch elasticity, and present our findings in Figure 3 accordingly. In this

42See Chetty et al. (2011) and Chetty (2012) for a detailed discussion.
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Fig. 3. Potential Welfare Loss due to Inelastic Labor

practice, the welfare under inelastic labor supply is computed by choosing the value of sy from
[-0.4 0.9], and setting the values of sx and sr such that equations (44) and (45) hold. The utility
for all combinations of s∗y, s∗x and s∗r , conditional on the calibrated value of η, is then compared
with the first-best outcome under elastic labor as reported in Table 6. In Figure 3, we find
that the welfare losses tend to get intensified when the wedge between the optimal final-good
subsidy rate under inelastic labor supply (sIL∗

y ) and the counterpart under elastic labor supply
(sEL∗

y ) becomes larger. In addition, given any sIL∗
y such that sIL∗

y 6= sEL∗
y , the welfare losses, which

increase with the labor elasticity η, can be potentially substantial. The intuition for these results
are straightforward. When the elasticity of labor supply is small, assuming inelastic labor would
not leave out the response of labor to wage too much, and hence, the welfare differences tend
to be small. To the contrary, when the elasticity of labor supply is large, setting it to zero in the
theoretical model would ignore the response of labor supply to fluctuations in wage, leading to
considerable welfare costs.

In practice, policymakers exploiting the model with inelastic supply might consider to set
sIL∗

y or sIL∗
x to 0 for convenience. According to our calculation, when η = 0.1 and sIL∗

y = 0
(which implies sIL∗

x = 1 − β = 1/3), the potential welfare loss is approximately 1%. When
η = 0.5 (namely the upper bound of Frisch elasticity estimates in most microeconomic studies),
the potential welfare loss surges to 3.92%. If η takes the value of unity as calibrated in Trabandt
and Uhlig (2011) and Annicchiarico et al. (2022), the welfare loss further increases to 5.83%.
Hence, the above numerical analysis highlights the importance of elastic labor supply to welfare
implications.
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7 Conclusion

In this study, we explore the growth and welfare implications of a subsidization-policy regime
in a quality-ladder model with elastic labor supply, where subsidies are financed by distortionary
labor income taxes. This subsidization regime includes three policy instruments: subsidies to the
production of final goods, subsidies to the purchase of intermediate goods, and subsidies to R&D.
In this model, the equilibrium allocation is subject to three layers of distortions, namely, the dis-
tortions on monopoly pricing, labor supply, and R&D externalities. Therefore, the policymaker
can adjust the equilibrium allocation to mitigate these distortions by properly implementing the
subsidy tools.

The result in the current study differs substantially from those in the literature. In the pres-
ence of lump-sum taxes, Barro and Sala-I-Martin (2003) show that in a variety-expansion model
with inelastic labor supply, the social optimum can be attained by subsidizing manufacturing
(through either the production of final output or the purchase of intermediate products), whereas
the analysis of Acemoglu (2009) (and Yang 2018) implies that in a quality-ladder model with in-
elastic (elastic) labor supply, the social optimum can be achieved by subsidizing manufacturing
and research together. With elastic labor supply and distortionary taxes, Zeng and Zhang (2007)
show that in a variety-expansion model, the social optimum could not be restored by using a
single type of subsidies or their combination within a reasonable range in taxes. Nevertheless,
under a similar setting of labor and taxation as in Zeng and Zhang (2007), our analysis shows that
in a quality-ladder model, the mix of subsidies to the production of final goods, the purchase of
intermediate goods, and research is able to replicate the first-best optimal outcome by correcting
all distortions occurring in the decentralized equilibrium. Specifically, subsidies to manufactur-
ing tend to remove the distortions on monopoly pricing and the consumption-labor tradeoff,
whereas subsidies to R&D tend to remove the distortion on R&D externalities. Therefore, the
process of innovation is crucial in determining the possibility of which the social optimum is
attained in a decentralized equilibrium with the aid of subsidies.

To quantify the effectiveness of subsidy tools in promoting economic growth and raising so-
cial welfare, this model is calibrated to the US data to perform a numerical analysis on growth
maximization and welfare maximization. First, the use of more types of subsidies ameliorates
the effects on maximizing growth and welfare. Second, as for the use of a single instrument,
we find that R&D subsidy is less growth-enhancing and welfare-improving than the other types
of subsidies. Finally, as for the use of a mix of two instruments, subsidizing final-good pro-
duction and the purchase of intermediate goods is most effective in promoting growth but least
effective in raising welfare. These quantitative results differ significantly from some existing
studies showing that R&D subsidy is more growth-enhancing and welfare-improving than the
other subsidies. Although subsidizing R&D investment is the common practice as observed in
many industrialized countries, the present study provides an important policy implication on
extending the dimensionality of the fiscal-policy (or industrial-policy) system by increasing the
number of subsidy/tax tools, given that the mechanism of these dimensions works differently in
allocating resources and eliminating inefficiencies.
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Appendix A

A.1 Proof of Proposition 1

In this proof, we examine the stability of this model given a stationary path of sy,t, sx,t, and
sr,t. First, define the transformed variable Φt ≡ Ct/Yt. Taking the log of Φt and differentiating it
with respect to time yields

Φ̇t

Φt
=

Ċt

Ct
− Ẏt

Yt
. (A.1)

Substituting (4) into (A.1) yields

Φ̇t

Φt
=

rt − ρ

σ
− θ(1− σ)(1 + η)L

1
η

t L̇t

η

[
1− θ(1− σ)L

1+ 1
η

t

] − Ẏt

Yt
. (A.2)

We now construct a relation between rt and Lt. Consider that for the monopolist in line ν, quality
q is given. Hence, from (18), we have V̇t(ν)/Vt(ν) = L̇t/Lt. Then using (12) for πt(ν) and (20),
we can rewrite the no-arbitrage condition (18) as

rt =
L̇t

Lt
+

ζλ(1− β)
(

1+sy
1−sx

) 1
1−β

1− sr
− pt(ν).

(A.3)

This implies that pt(ν) = pt is identical across industries. Moreover, from (14), we derive the
growth rate of output such that

Ẏt

Yt
=

Q̇t

Qt
+

L̇t

Lt
= (λ− 1)pt +

L̇t

Lt
, (A.4)

where we have applied the definition of the growth rate of aggregate technology Q̇t/Qt = pt(λ−
1). By inserting (A.3) and (A.4) back into (A.2), we obtain

Φ̇t

Φt
=

1
σ

 L̇t

Lt
+

ζλ(1− β)
(

1+sy
1−sx

) 1
1−β

1− sr
− pt − ρ

− θ(1− σ)(1 + η)L
1
η

t L̇t

η

[
1− θ(1− σ)L

1+ 1
η

t

] − (λ− 1)pt −
L̇t

Lt

=


1− σ

σ
− θ(1− σ)(1 + η)L

1+ 1
η

t

η

[
1− θ(1− σ)L

1+ 1
η

t

]


L̇t

Lt
−
(

λ− 1 +
1
σ

)
pt +

1
σ

 ζλ(1− β)
(

1+sy
1−sx

) 1
1−β

1− sr
− ρ

 .

(A.5)
So far, we have three endogenous variables {pt, Lt, Φt} in (A.5) and next derive their relations.

To do so, we first use the government budget constraint (22) to express τt as a function of pt. By
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plugging (14), (15), (16) and (25) into (22),43 we obtain

τtWtLt = syYt + sxXt + srZt

⇔τt(1 + sy)

(
1− β

β

)(
1 + sy

1− sx

) β
1−β

QtLt =
sy

β

(
1 + sy

1− sx

) β
1−β

QtLt + sxβ

(
1 + sy

1− sx

) 1
1−β

QtLt +
sr pt

ζ
QtLt

⇔τt(1 + sy)

(
1− β

β

)
=

sy

β
+ sxβ

(
1 + sy

1− sx

)
+

sr pt

ζ

(
1 + sy

1− sx

) −β
1−β

⇔τt =

 srβ

ζ(1− β)(1 + sy)
(

1+sy
1−sx

) β
1−β


︸ ︷︷ ︸

χ1>0

pt +

[
sy

(1− β)(1 + sy)
+

β2sr

(1− β)(1− sx)

]
︸ ︷︷ ︸

χ2>0

.

(A.6)
Relating pt with Φt and Lt by substituting (16) and (A.6) into (3) yields

Wt(1− τt)

Ct
=

σθ(1 + η)L
1
η

t

η

[
1− θ(1− σ)L

1+ 1
η

t

]

⇔
(1 + sy)

(
1−β

β

) (
1+sy
1−sx

) β
1−β Qt(1− χ1 pt − χ2)

(Ct/Yt)Yt
=

σθ(1 + η)L
1
η

t

η

[
1− θ(1− σ)L

1+ 1
η

t

]

⇔
(1 + sy)

(
1−β

β

) (
1+sy
1−sx

) β
1−β Qt(1− χ1 pt − χ2)

Φt
1
β

(
1+sy
1−sx

) β
1−β QtLt

=
σθ(1 + η)L

1
η

t

η

[
1− θ(1− σ)L

1+ 1
η

t

]

⇔
(1 + sy)(1− β)(1− χ1 pt − χ2)

Φt
=

σθ(1 + η)L
1+ 1

η

t

η

[
1− θ(1− σ)L

1+ 1
η

t

]

⇔pt =
1− χ2

χ1
− σθ(1 + η)ΦtL

1+ 1
η

t

ηχ1(1 + sy)(1− β)

[
1− θ(1− σ)L

1+ 1
η

t

] ,

(A.7)

where χ1 and χ2 are constants. Moreover, substituting (14), (15) and (25) into the final-good

43Note that equation (25) holds since we have proven above that pt(ν) = pt, which does not rely on any BGP
condition.

34



market-clearing condition shows that

Yt = Ct + Xt + Zt ⇔ 1 = Φt +
Xt

Yt
+

Zt

Yt

⇔1 = Φt +
β
(

1+sy
1−sx

) 1
1−β QtLt

1
β

(
1+sy
1−sx

) β
1−β QtLt

+
ptQtLt/ζ

1
β

(
1+sy
1−sx

) β
1−β QtLt

⇔1 = Φt + β2
(

1 + sy

1− sx

)
+

βpt

ζ
(

1+sy
1−sx

) β
1−β

⇔1 = Φt + β2
(

1 + sy

1− sx

)
+

β(1−χ2)
χ1

− βσθ(1+η)Φt L
1+ 1

η
t

ηχ1(1+sy)(1−β)

[
1−θ(1−σ)L

1+ 1
η

t

]

ζ
(

1+sy
1−sx

) β
1−β

⇔1− β2
(

1 + sy

1− sx

)
= Φt +

β(1− χ2)

ζχ1

(
1+sy
1−sx

) β
1−β︸ ︷︷ ︸

χ3

− βσθ(1 + η)

ηζχ1(1 + sy)(1− β)
(

1+sy
1−sx

) β
1−β︸ ︷︷ ︸

χ4

· ΦtL
1+ 1

η

t[
1− θ(1− σ)L

1+ 1
η

t

]
(A.8)

where

χ3 =
(1− β)(1 + sy)− sy −

(
1+sy
1−sx

)
β2sr

sr

and

χ4 =
σθ(1 + η)

ηsr

are constants. Therefore, (A.8) is eventually reduced to

1− β2
(

1 + sy

1− sx

)
= Φt +

(1− β)(1 + sy)− sy

sr
− β2

(
1 + sy

1− sx

)
− σθ(1 + η)

ηsr
· ΦtL

1+ 1
η

t[
1− θ(1− σ)L

1+ 1
η

t

]

⇔
β(1 + sy)− 1 + sr

sr︸ ︷︷ ︸
χ5

= Φt

1− χ4L
1+ 1

η

t[
1− θ(1− σ)L

1+ 1
η

t

]


⇔Φt =

χ5

[
1− θ(1− σ)L

1+ 1
η

t

]
1− [χ4 + θ(1− σ)] L

1+ 1
η

t

.

(A.9)
Since σ > 0 and the calibrated value of θ exceeds 1, the condition σ > (1− θ)/θ holds, ensuring
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that the term 1− θ(1− σ)L
1+ 1

η

t must be positive. Therefore, equation (A.9) implies that

χ5

1− [χ4 + θ(1− σ)]L
1+ 1

η

t

> 0

must hold. Moreover, differentiating both sides of (A.9) with respect to time t yields

Φ̇t =
χ4χ5

(
1 + 1

η

)
L

1
η

t L̇t{
1− [χ4 + θ(1− σ)] L

1+ 1
η

t

}2 . (A.10)

Combining (A.9) and (A.10) yields

Φ̇t

Φt
=

χ4

(
1 + 1

η

)
L

1+ 1
η

t{
1− [χ4 + θ(1− σ)]L

1+ 1
η

t

} [
1− θ(1− σ)L

1+ 1
η

t

] L̇t

Lt
. (A.11)

Finally, by substituting (A.11) into (A.5), we can obtain the one dimensional differential equation
of Lt:

L̇t

Lt


χ4

(
1 + 1

η

)
L

1+ 1
η

t{
1− [χ4 + θ(1− σ)]L

1+ 1
η

t

} [
1− θ(1− σ)L

1+ 1
η

t

] +
σ− 1

σ
+

θ(1− σ)(1 + η)L
1+ 1

η

t

η

[
1− θ(1− σ)L

1+ 1
η

t

]


=
1
σ

 ζλ(1− β)
(

1+sy
1−sx

) 1
1−β

1− sr
− ρ

−(λ− 1 +
1
σ

)
pt.

(A.12)
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The right-hand side of (A.12) can be rewritten by using (A.7) and (A.9):

1
σ

 ζλ(1− β)
(

1+sy
1−sx

) 1
1−β

1− sr
− ρ

−(λ− 1 +
1
σ

)


1− χ2

χ1
−

σθ(1 + η)L
1+ 1

η

t

χ5

[
1−θ(1−σ)L

1+ 1
η

t

]

1−[χ4+θ(1−σ)]L
1+ 1

η
t

ηχ1(1 + sy)(1− β)

[
1− θ(1− σ)L

1+ 1
η

t

]


=
ζλ(1− β)

(
1+sy
1−sx

) 1
1−β

σ(1− sr)
− ρ

σ
−

(1− χ2)
(
λ− 1 + 1

σ

)
χ1︸ ︷︷ ︸

χ6

+
ζσθ(1 + η)χ5

(
λ− 1 + 1

σ

) ( 1+sy
1−sx

) β
1−β

ηβsr︸ ︷︷ ︸
χ7

· L
1+ 1

η

t

1− [χ4 + θ(1− σ)]L
1+ 1

η

t

Because there is no population growth, i.e., L̇t/Lt = 0, it must be true that

χ6 +
ζσθ(1 + η)

(
λ− 1 + 1

σ

) ( 1+sy
1−sx

) β
1−β L

1+ 1
η

t

ηβsr︸ ︷︷ ︸
>0

· χ5

1− [χ4 + θ(1− σ)]L
1+ 1

η

t

= 0,

which implies that the condition
χ6 < 0

must hold, because χ5/{1− [χ4 + θ(1− σ)]L
1+ 1

η

t } > 0 according to (A.9). In addition, the terms
associated with L̇t/Lt on the left-hand side of (A.12) can be rewritten as

χ4(1 + 1/η)L
1+ 1

η

t + θ(1− σ)(1 + 1/η)L
1+ 1

η

t

{
1− [χ4 + θ(1− σ)]L

1+ 1
η

t

}
[

1− θ(1− σ)L
1+ 1

η

t

]{
1− [χ4 + θ(1− σ)]L

1+ 1
η

t

} +
σ− 1

σ

=

(1 + 1/η)L
1+ 1

η

t

{
χ4 + θ(1− σ)− θ(1− σ)[χ4 + θ(1− σ)]L

1+ 1
η

t

}
[

1− θ(1− σ)L
1+ 1

η

t

]{
1− [χ4 + θ(1− σ)]L

1+ 1
η

t

} +
σ− 1

σ

=
(1 + 1/η)[χ4 + θ(1− σ)]L

1+ 1
η

t

1− [χ4 + θ(1− σ)]L
1+ 1

η

t

+
σ− 1

σ
.
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The one-dimensional differential equation for Lt in (A.12) can be further reduced to

L̇t

Lt
=

χ6 +
χ7L

1+ 1
η

t

1−[χ4+θ(1−σ)]L
1+ 1

η
t

σ−1
σ +

(1+1/η)[χ4+θ(1−σ)]L
1+ 1

η
t

1−[χ4+θ(1−σ)]L
1+ 1

η
t

=
χ6 +

χ7

L−(1+1/η)
t −[χ4+θ(1−σ)]

σ−1
σ + (1+1/η)[χ4+θ(1−σ)]

L−(1+1/η)
t −[χ4+θ(1−σ)]

. (A.13)

We next show that ∂(L̇t/Lt)/∂Lt > 0. First, along a BGP, by imposing L̇t/Lt = 0 in (A.13), we
can obtain the steady-state value of L such that

L =

(
χ6

χ6[χ4 + θ(1− σ)]− χ7

) η
1+η

. (A.14)

Given the condition χ6 < 0, the parameter space is restricted such that

χ7 − χ6[χ4 + θ(1− σ)] > 0. (A.15)

to ensure 0 < L < 1. Next, define F(Lt) = {L−(1+1/η)
t − [χ4 + θ(1− σ)]}−1, we have F′(Lt) > 0.

Therefore, from (A.13), we can calculate

∂(L̇t/Lt)

∂Lt
≷ 0

⇔χ7F′(Lt)

{
σ− 1

σ
+

(
1 +

1
η

)
[χ4 + θ(1− σ)]F(Lt)

}
− [χ6 + χ7F(Lt)]

(
1 +

1
η

)
[χ4 + θ(1− σ)]F′(Lt) ≷ 0

⇔χ7

(
σ− 1

σ

)
− χ6

(
1 +

1
η

)
[χ4 + θ(1− σ)] ≷ 0.

(A.16)

Recall that χ4 = σθ(1 + η)/(ηsr). Then we have

χ4 + θ(1− σ) = θ

[
σ(1 + η)

ηsr
− σ + 1

]
= θ

[
σ

sr
− σ +

σ

ηsr
+ 1
]
> 0, (A.17)

as sr < 1. Therefore, the condition χ6 < 0 and (A.17) together guarantee χ7(1− 1/σ)− χ6(1 +

1/η)[χ4 + θ(1− σ)] > 0 in (A.16). Given that Lt is a control variable and ∂(L̇t/Lt)/∂Lt > 0, the
dynamics of Lt is characterized by saddle-point stability such that Lt jumps immediately to its
steady-state value. Equations (A.9) and (A.11) then imply that Φt = Φ is also stationary and
Φ̇t/Φt = 0. Moreover, (A.6) and (A.7) immediately follow that τt = τ and pt = p are also
time invariant, and then Xt/Yt and Zt/Yt from (A.8) are both stationary, implying that variables
{Yt, Ct, Xt, Zt} have an identical growth rate g. Finally, since Lt = L, from (16) we have

g =
Ẏt

Yt
=

Ẇt

Wt
=

Q̇t

Qt
=

Ċt

Ct
=

Ẋt

Xt
=

Żt

Zt
. (A.18)
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A.2 Derivation of the steady-state welfare function

The steady-state welfare function is obtained by imposing the BGP in the utility function (1).
When σ > 0 and σ 6= 1, integrating it yields

U0 =
1

1− σ


[
1− θ(1− σ)L1+ 1

η

]σ
C1−σ

0

ρ− g(1− σ)
− 1

ρ

 , (A.19)

where C0 is the initial level of consumption. Using (3) and (16), the term C0 can be re-expressed
as follows:

C0 =

(
1− τ

σθ

)(
η

1 + η

)(
1− β

β

)
(1 + sy)

1
1−β (1− sx)

β
β−1

[
1− θ(1− σ)L1+ 1

η

]
L

1
η

Q0, (A.20)

where Q0 is the initial level of aggregate quality, and τ and L are given by (31) and (32), respec-
tively. Hence, given that τ and L are functions of policy instruments {sy, sx, sr}, the welfare level
U0 is also a function of policy instruments {sy, sx, sr}.

When σ = 1, the utility function becomes

Ut =
∫ ∞

0
e−ρt

(
ln Ct − θL

1+ 1
η

t

)
dt.

Integrating it yields

U0 =
1
ρ

(
ln C0 +

g
ρ
− θL1+ 1

η

)
, (A.21)

and the expression for C0 can be attained by setting σ = 1 in (A.20).
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